
Tracking plan shapes
over time with Plan IDs
+ a new pg_stat_plans

lukas@pganalyze.com

1. Why do we need a Plan ID?
2. Status Quo of Plan Statistics
3. In-core Plan IDs vs Extensions
4. A new pg_stat_plans

Why do we need a
Plan ID?

Why do we need a Plan ID?

Query ID
Differentiates by query structure.

Plan ID
Differentiates by plan shape.

Why do we need a Plan ID?

Plan Shape
~ EXPLAIN (COSTS OFF)

Seq Scan on users
 Filter: (lower((email)::text) = '...'::text)

vs

 Bitmap Heap Scan on users
 Recheck Cond: (lower((email)::text) = '...'::text)
 -> Bitmap Index Scan on index_users_lower_email
 Index Cond: (lower((email)::text) = '...'::text)

Why do we need a Plan ID?

Plan IDs let us track plan usage over time

Why do we need a Plan ID?

Plan IDs let us detect regressions, quickly

"I’m a huge fan of Postgres. This one is “user error”, but we still
got bit pretty hard.

A query plan changed, on a frequently-run query (~1k/sec) on
a large table (~2B rows) without warning. Went from sub-
millisecond to multi-second.

The PG query planner is generally very good,
but also very opaque."
- Scott Hardy on Hacker News (2021)

https://news.ycombinator.com/item?id=28489340

Status Quo of
Plan Statistics

Status Quo of Plan Statistics

This is not a new idea.

Status Quo of Plan Statistics

The old pg_stat_plans
is unmaintained.

There are open-source alternatives,
but they have high overhead.

Status Quo of Plan Statistics

pg_store_plans

Calculates the EXPLAIN text for every execution to hash it for the plan ID
~20% overhead in some cases

Status Quo of Plan Statistics

pg_stat_monitor

Calculates the EXPLAIN text for every execution to hash it for the plan ID
(if enabled)

Status Quo of Plan Statistics

In 2024, AWS launched
aurora_plan_stats for Aurora.

And Microsoft has plan IDs
in Query Store for Azure Postgres.

Status Quo of Plan Statistics

Can Postgres do better here?

In-core Plan IDs
vs Extensions

In-core Plan IDs vs Extensions

Plan ID calculation must be fast
It should happen with every
planning cycle.

In-core Plan IDs vs Extensions

ExplainPrintPlan + hash(big text)

In-core Plan IDs vs Extensions

ExplainPrintPlan + hash(big text)

In-core Plan IDs vs Extensions

We need a tree walk + "jumble"

Query ID = Walk post parse-analysis trees
 Plan ID = Walk plan tree

In-core Plan IDs vs Extensions

This is messy out-of-core.

e.g. Index Quals are "Usually" OpExpr

(but could be any node, and we want to jumble it)

In-core Plan IDs vs Extensions

In core its easy to maintain
"what is significant"
on the plannodes.h structs

In-core Plan IDs vs Extensions

Input needed on what is significant

https://wiki.postgresql.org/wiki/Plan_ID_Jumbling

In-core Plan IDs vs Extensions

In core we also have a tree walk
we can re-use, in setrefs.c

In-core Plan IDs vs Extensions

This is all PG 19 discussion material.

But we did get
key improvements in 18
we can build on.

In-core Plan IDs vs Extensions

PG18: Allow plugins to set a 64-bit plan identifier in PlannedStmt

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=2a0cd38da5ccf70461c51a489ee7d25fcd3f26be

In-core Plan IDs vs Extensions

In Postgres 18, you can now write an extension that sets
PlannedStmt.planId in a planner_hook, and then uses it in
ExecutorFinish_hook to track statistics.

A new pg_stat_plans

A new pg_stat_plans

 github.com/pganalyze/pg_stat_plans

http://github.com/pganalyze/pg_stat_plans

In-core Plan IDs vs Extensions

PG18: Introduce pluggable APIs for Cumulative Statistics

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=7949d9594582ab49dee221e1db1aa5401ace49d4

A new pg_stat_plans

SELECT * FROM pg_stat_plans;  

 
-[RECORD 1]---+--
userid | 10
dbid | 16391
toplevel | t
queryid | -2322344003805516737
planid | -1865871893278385236
calls | 1
total_exec_time | 0.047708
plan | Limit +
 | -> Sort +
 | Sort Key: database_stats_35d.frozenxid_age DESC +
 | -> Bitmap Heap Scan on database_stats_35d_20250514 database_stats_35d +
 | Recheck Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid) +
 | Filter: ((frozenxid_age IS NOT NULL) AND (collected_at = '2025-05-14 14:30:00'::timestamp without time zone))+
 | -> Bitmap Index Scan on database_stats_35d_20250514_server_id_idx +
 | Index Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid)Cumulative statistics on which query ID used which plan,
how often (calls), and how long it took (total_exec_time).

A new pg_stat_plans

SELECT * FROM pg_stat_plans;  

 
-[RECORD 1]---+--
userid | 10
dbid | 16391
toplevel | t
queryid | -2322344003805516737
planid | -1865871893278385236
calls | 1
total_exec_time | 0.047708
plan | Limit +
 | -> Sort +
 | Sort Key: database_stats_35d.frozenxid_age DESC +
 | -> Bitmap Heap Scan on database_stats_35d_20250514 database_stats_35d +
 | Recheck Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid) +
 | Filter: ((frozenxid_age IS NOT NULL) AND (collected_at = '2025-05-14 14:30:00'::timestamp without time zone))+
 | -> Bitmap Index Scan on database_stats_35d_20250514_server_id_idx +
 | Index Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid)

Plan ID calculated with tree walk after planning
+ copying code from Postgres

A new pg_stat_plans

SELECT * FROM pg_stat_plans;  

 
-[RECORD 1]---+--
userid | 10
dbid | 16391
toplevel | t
queryid | -2322344003805516737
planid | -1865871893278385236
calls | 1
total_exec_time | 0.047708
plan | Limit +
 | -> Sort +
 | Sort Key: database_stats_35d.frozenxid_age DESC +
 | -> Bitmap Heap Scan on database_stats_35d_20250514 database_stats_35d +
 | Recheck Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid) +
 | Filter: ((frozenxid_age IS NOT NULL) AND (collected_at = '2025-05-14 14:30:00'::timestamp without time zone))+
 | -> Bitmap Index Scan on database_stats_35d_20250514_server_id_idx +
 | Index Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid)

Plan Text stored in Dynamic Shared Memory,
not a file on disk. Optionally compressed with zstd.

A new pg_stat_plans

SELECT * FROM pg_stat_plans_activity;

 
 pid | plan_id | plan
-------+----------------------+--
 83994 | -5449095327982245076 | Merge Join +
 | | Merge Cond: ((a.datid = p.dbid) AND (a.usesysid = p.userid) AND (a.query_id = p.queryid) AND (a.plan_id = p.planid))+
 | | -> Sort +
 | | Sort Key: a.datid, a.usesysid, a.query_id, a.plan_id +
 | | -> Function Scan on pg_stat_plans_get_activity a +
 | | -> Sort +
 | | Sort Key: p.dbid, p.userid, p.queryid, p.planid +
 | | -> Function Scan on pg_stat_plans p +
 | | Filter: (toplevel IS TRUE)
 87168 | 4721228144609632390 | Sort +
 | | Sort Key: q.id +
 | | -> Nested Loop +
 | | -> Index Scan using index_query_runs_on_server_id on query_runs q +
 | | Index Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid) +
 | | Filter: ((started_at IS NULL) AND (finished_at IS NULL)) +
 | | -> Index Scan using databases_pkey on databases db +
 | | Index Cond: (id = q.database_id)
 81527 | 3819832514333472635 | Result
(3 rows) Get the plan for a currently running query

(no progress tracking, just the plan that's being used)

A new pg_stat_plans

Overhead is noticeably lower
than existing extensions (higher is better)

A new pg_stat_plans

Next steps for pg_stat_plans 2.0

- Plan text compression improvements

- Stabilize extension (test/benchmark)

- Partial support for older releases

A new pg_stat_plans

Open questions

- How do we handle Append nodes in plan IDs?

- What metrics should we capture per-plan?

- Worth supporting other EXPLAIN formats?

- Should a future pg_stat_statements version handle

plans too, or should we keep it separate?

Thank you!

