Tracking plan shapes
over time with Plan IDs
+ a new pg_stat_plans

*
@ pganalyze lukas@pganalyze.com

1. Why do we need a Plan ID?
2. Status Quo of Plan Statistics

3. In-core Plan IDs vs Extensions

4. A new pg_stat_plans

*
@ pganalyze

*
pganalyze

Why do we need a
Plan ID?

+
FERITEL Why do we need a Plan ID?

Query ID
Ditterentiates by query structure.

Plan ID
Ditterentiates by plan shape.

+
FERITEL Why do we need a Plan ID?

Plan Shape
~ EXPLAIN (COSTS OFF)

Seg Scan on users
Filter: (lower((email)::text) = "...'::text)

VS

Bitmap Heap Scan on users
Recheck Cond: (lower((email)::text) = '...'::text)
-> Bitmap Index Scan on index_users_lower_email

Index Cond: (lower((email)::text) = '...'::text)

Why do we need a Plan ID?

Plan IDs let us track plan usage over time

Plan Statistics [J Show All Plans @
PLAN EST. COST AVG RUNTIME CALLS / MIN ORIGINALPLANID@® PLAN NODES
M 2d4bb24 0 0.06ms 17 -15608242543328.. Aggregate - CTE - CTE +142 more
K b11f737 0 0.07ms 5 -91824118698804.. Aggregate - CTE- CTE +138 more
Avg Time
@ b11f737 © 2d4bb24
0.08 ms:
A A A A A

0.06 ms |

0.04 ms

0.02 ms

0.00 ms : , , , , , : , : : : , , : , , ; : :

T T T T T T T T T T 1
07:50 07:51 07:52 07:53 07:54 0755 07:56 07:57 07:58 07:59 O08AM 08:01 08:02 08:03 08:04 0805 08:06 08:07 08:08 08:09 08:10 08:11 0812 0813 08:14 08:15 08:16 08:177 08:18 08:19 08:20

07:50 07:51 07:52 07:583 07:54 07:55 07:56 07:57 07:58 07:59 08 AM 08:01 08:02 08:03 08:04 08:05 08:06 08:07 08:08 08:09 08:10 08:11 08:12 08:13 08:14 08:15 08:16 08:17 08:18 08:19 08:20

+
FERITEL Why do we need a Plan ID?

Plan IDs let us detect regressions, quickly

"I'm a huge fan of Postgres. This one is “user error”, but we still
got bit pretty hard.

A query plan changed, on a frequently-run query (~1k/sec) on
a large table (~2B rows) without warning. Went from sub-

millisecond to multi-second.

The PG query planner is generally very good,

but also very opaque.”
- Scott Hardy on Hacker News (2021)

https://news.ycombinator.com/item?id=28489340

*
pganalyze

Status Quo of
Plan Statistics

4
‘ pganalyze Status Quo of Plan Statistics
NN

This is not a new idea.

= O 2ndQuadrant / pg_stat_plans Q

<> Code () Issues 11 {9 Pullrequests (» Actions [J Projects [J wiki @ Security [~ Insights

—|! pg_stat_plans Pubiic ® Unwatch 65 ~

¥ master ~ ¥ 1Branch © 4 Tags Q Go to file t Add file ~ <> Code ~

Commit 4c8c¢749

Peter Geoghegan committed on Aug 17, 2012

Initial commit of pg_stat_plans.

Some rolling-back of functionality that clearly will only work with 9.2. The
utility does not yet build against PostgreSQL 9.1.

¥ master . O REL1_O_STABLE -+ REL1_0O_BETA1

Status Quo of Plan Statistics

The old pg_stat_plans
is unmaintained.

There are open-source alternatives,
but they have high overhead.

Status Quo of Plan Statistics

pg_store_plans

EL? ¥ master ~ pg_store_plans [/ pg_store_plans.c

Code

Blame 2485 lines (2153 loc) - 67.3 KB

107 typedef enum pgspVersion
1241 normalized_plan = pgsp_json_normalize(plan);
1242 shorten_plan = pgsp_json_shorten(plan);
1243 elog(DEBUG3, "pg_store_plans: Normalized plan: %s", normalized_plan);
1244 elog(DEBUG3, "pg_store_plans: Shorten plan: %s", shorten_plan);
1245 elog(DEBUG3, "pg_store_plans: Original plan: %s", plan);
1246 plan_len = strlen(shorten_plan);
1247
1248 key.planid = hash_any((const unsigned char x)normalized_plan,
1249 strlen(normalized_plan));
1250 pfree(normalized_plan);
127R1

Calculates the EXPLAIN text for every execution to hash it for the plan ID
~20% overhead in some cases

4
‘ pganalyze Status Quo of Plan Statistics
NN

pg_stat_monitor

[& main ~ pg_stat_monitor / pg_stat_monitor.c

) EEE—

Code | Blame 4041 lines (3486 loc) - 116 kKB - @)
707
708 /* Extract the plan information in case of SELECT statement x/
709 if (queryDesc—>operation == CMD_SELECT && pgsm_enable_query_plan)
710 {
711 int rv;
712 MemoryContext oldctx;
713
714 /*
715 * Making sure it is a per query context so that there's no memory
716 * leak when executor ends.
717 */
718 oldctx = MemoryContextSwitchTo(queryDesc->estate->es_query_cxt);
719
720 rv = snprintf(plan_info.plan_text, PLAN_TEXT_LEN, "%s", pgsm_explain(queryDesc));
721
722 /*
723 x If snprint didn't write anything or there was an error, let's keep
724 *x planinfo as NULL.
725 */
726 if (rv > 0)
727 {
728 plan_info.plan_len = (rv < PLAN_TEXT_LEN) ? rv : PLAN_TEXT_LEN - 1;
729 plan_info.planid = pgsm_hash_string(plan_info.plan_text, plan_info.plan_len);
730 plan_ptr = &plan_info;
731 }
732

Calculates the EXPLAIN text for every execution to hash it for the plan ID
(if enabled)

Status Quo of Plan Statistics

In 2024, AWS launched
aurora_plan_stats for Aurora.

And Microsoft has plan IDs
in Query Store for Azure Postgres.

Status Quo of Plan Statistics

Can Postgres do better here?

*
pganalyze

In-core Plan IDs
vs Extensions

+
pganalyze In-core Plan IDs vs Extensions
NN

Plan ID calculation must be fast
't should happen with every
olanning cycle.

4
pganalyze In-core Plan IDs vs Extensions
NN

ExplainPrintPlan + hash(big text)

In-core Plan |IDs vs Extensions

4
pganalyze In-core Plan IDs vs Extensions
NN

We need a tree walk + "jumble”

Query ID = Walk post parse-analysis trees
Plan ID = Walk plan tree

4
pganalyze In-core Plan IDs vs Extensions
NN

This is messy out-of-core.

typedef struct IndexScan
{
Scan scan;
/* 0ID of index to scan *x/
0id indexid;
/* list of index quals (usually OpExprs) x/
List *xindexqual;

e.g. Index Quals are "Usually" OpExpr
(but could be any node, and we want to jumble it)

In-core Plan |IDs vs Extensions

In core its easy to maintain
"what is significant"
on the plannodes.h structs

1059
1060
1061
1062

1156
1157
1158
1159

1160

1059
1060
1061

1062
1063
1064
1065

1156
1157
1158

1159
1160

@@ -1059,7 +1059,7 @@ typedef struct Memoize

* The maximum number of entries that the planner expects will fit in the
* cache, or @ if unknown

*/
uint32 est_entries;
uint32 est_entries pg_node_attr(query_jumble_ignore);

/* paramids from param_exprs x/
Bitmapset sxkeyparamids;

@@ -1156,7 +1156,7 @@ typedef struct Agg
0id xgrpCollations pg_node_attr(array_size(numCols));
/* estimated number of groups in input x/

long numGroups;
long numGroups pg_node_attr(query_jumble_ignore);

pganalyze In-core Plan IDs vs Extensions

Input needed on what is significant

navigation
= Main Page
= Random page
= Recent changes
= Help

tools
= What links here
= Related changes
= Special pages
= Printable version
= Permanent link

= Page information

search

’Search PostgreSQL w‘
| Go | | Search |

page discussion view source history

Want to edit, but don't see an edit button when logged in? Click here.

Plan ID Jumbling

This page describes the proposed feature for Postgres 18 or 19 that records a planid , similar to the existing queryid recorded by query jumbling (previously done by pg_st

See Commitfest entry & and pgsql-hackers thread&.

What to jumble

The current thesis behind what should be jumbled (included in the planid hash) is that plans that have the same EXPLAIN (COSTS OFF) output should yield the same pl
different planid , but different costs/selectivity or execution time statistics do not.

Note that plan jumbling relies on the existing query jumbling logic and decisions for any expressions, and as such e.g. ignores A_Const nodes, so a plan with different paramet

Plan jumbling is currently proposed to occur during the existing treewalk in src/backend/optimizer/plan/setrefs.c , and as such fields that would cause us to descend
"Indirect" in the table below.

Further, to ease maintenance we jumble any field that is not explicitly causing issues with a changing planid , even if the field is not actually used by src/backend/commanc

We could alternatively omit any fields that are duplicated (e.g. only have one of IndexScan.indexqual and IndexScan.indexqualorig), or omit those only used by the
performance at the expense of higher maintenance overhead (review to be done) when adding new fields.

Jumbling details for all plan struct (plannodes.h) fields

For easier review/discussion, the table below represents all fields under consideration to be jumbled/not jumbled:

Struct / Field Include in Jumble Hash? Why not? / Notes
Plan (abstract)
type Yes
disabled_nodes No Costing/selectivity information should be ignored

startup_cost No Costing/selectivity information should be ignored

https://wiki.postgresql.org/wiki/Plan_ID_Jumbling

In-core Plan |IDs vs Extensions

In core we also have a tree walk
we can re-use, in setrefs.c

v -3 9 mmmmm src/backend/optimizer/plan/setrefs.c (&

X @@ -19,6 +19,7 @@
19 19 #include "catalog/pg_type.h"
20 20 #include "nodes/makefuncs.h"
21 21 #include "nodes/nodeFuncs.h"
22 + #include "nodes/queryjumble.h"
22 23 #include "optimizer/optimizer.h"
23 24 #include "optimizer/pathnode.h"
24 25 #include "optimizer/planmain.h"
: @@ -1315,6 +1316,14 @@ set_plan_refs(PlannerInfo *root, Plan xplan, int rtoffset)
1315 1316 plan—>lefttree = set_plan_refs(root, plan->lefttree, rtoffset);
1316 1317 plan->righttree = set_plan_refs(root, plan->righttree, rtoffset);
1317 1318
1319 + /*
1320 + * If enabled, append significant information to the plan identifier
1321 + * jumble (we do this here since we're already walking the tree in a
1322 + * near-final state)
1323 + %/
1324 + if (IsPlanIdEnabled())
1325 + JumbleNode(root->glob—>plan_jumble_state, (Node %) plan);

-, N~

+
pganalyze In-core Plan IDs vs Extensions
NN

This is all PG 19 discussion material.

But we did get
key improvements in 18
we can build on.

In-core Plan |IDs vs Extensions

PG18: Allow plugins to set a 64-bit plan identifier in PlannedStmt

author Michael Paquier <michael@paquier.xyz>

Mon, 24 Mar 2025 04:23:42 +0000 (13:23 +0900)
committer Michael Paquier <michael@paquier.xyz>

Mon, 24 Mar 2025 04:23:42 +0000 (13:23 +0900)
commit 2a0cd38da5ccf70461c51a489ee7d25fcd3f26be
tree 000fe6d92b36523695dch368d699%9ecf2ecddf191 tree
parent 8a3e4011f02dd2789717c633e74fefdd3b648386 commit | ditf

Allow plugins to set a 64-bit plan identifier in PlannedStmt

This field can be optionally set in a PlannedStmt through the planner
hook, giving extensions the possibility to assign an identifier related
to a computed plan. The backend is changed to report it in the backend
entry of a process running (including the extended query protocol), with
semantics and APIs to set or get it similar to what is used for the
existing query ID (introduced in the backend via 4f@b@966c8). The plan
ID is reset at the same timing as the query ID. Currently, this
information is not added to the system view pg_stat_activity; extensions
can access it through PgBackendStatus.

Some patches have been proposed to provide some features in the planning
area, where a plan identifier is used as a key to know the plan involved
(for statistics, plan storage and manipulations, etc.), and the point of
this commit is to provide an anchor in the backend that extensions can
rely on for future work. The reset of the plan identifier is
controlled by core and follows the same pattern as the query identifier
added in 4f@b0966c8.

The contents of this commit are extracted from a larger set proposed
originally by Lukas Fittl, that Sami Imseih has proposed as an
independent change, with a few tweaks sprinkled by me.

Author: Lukas Fittl <lukas@fittl.com>

Author: Sami Imseih <samimseih@gmail.com>

Reviewed-by: Bertrand Drouvot <bertranddrouvot.pg@gmail.com>
Reviewed-by: Michael Paquier <michael@paquier.xyz>

Discussion: https://postgr.es/m/CAP53Pkyow59ajFMHGpmb1BKOWHDypaWtUsS_5DoYUEfsa_Hktg@mail.gmail.com
Discussion: https://postgr.es/m/CAA5RZOvyWd4r35uUBUmhngv8XqeiJUkJIDDKKLf5LCoWxv-t_pw@mail.gmail.com

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=2a0cd38da5ccf70461c51a489ee7d25fcd3f26be

In-core Plan |IDs vs Extensions

typedef struct PlannedStmt
{
pg_node_attr(no_equal, no_query_jumble)

NodeTag type;

/* select|insert|update|delete|merge|utility x/
CmdType commandType;

/* query identifier (copied from Query) x/
uint64 queryld;

/* plan identifier (can be set by plugins) x/
uint64 planld;

In Postgres 18, you can now write an extension that sets
PlannedStmt.planild in a planner_hook, and then uses it in
ExecutorFinish_hook to track statistics.

*
pganalyze

A new pg_stat_plans

A new pg_stat_plans

o .
= O pganalyze / pg_stat_plans Q. Type (/] to search 4+ o OB YERE~ ﬁ$

<> Code () Issues 19 Pullrequests () Actions [J Projects [wiki @ Security [~ Insights 3 Settings

Il ¥ main ~ pg_stat_plans /| README.md (JJ Q Go to file t

github.com/pganalyze/pg_stat_plans

pg_stat_plans 2.0 - Track per-plan call counts, execution times and
EXPLAIN texts in Postgres

pg_stat_plans is designed for low overhead tracking of aggregate plan statistics in Postgres, by relying on hashing the plan tree with a
plan ID calculation. It aims to help identify plan regressions, and get an example plan for each Postgres query run, slow and fast.
Additionally, it allows showing the plan for a currently running query.

Plan texts are stored in shared memory for efficiency reasons (instead of a local file), with support for zstd compression to compress
large plan texts.

Plans have the same plan IDs when they have the same "plan shape", which intends to match EXPLAIN (COSTS OFF) . This extension is
optimized for tracking changes in plan shape, but does not aim to track execution statistics for plans, like auto_explain can do for outliers.

This project is inspired by multiple Postgres community projects, including the original pg_stat_plans extension (unmaintained), with a goal
of upstreaming parts of this extension into the core Postgres project over time.

Experimental. May still change in incompatible ways without notice. Not (yet) recommended for production use.

http://github.com/pganalyze/pg_stat_plans

In-core Plan |IDs vs Extensions

PG18: Introduce pluggable APIs for Cumulative Statistics

author Michael Paquier <michael@paquier.xyz>

Sun, 4 Aug 2024 10:41:24 +0000 (19:41 +0900)
committer Michael Paquier <michael@paquier.xyz>

Sun, 4 Aug 2024 10:41:24 +0000 (19:41 +0900)
commit 7949d9594582ab49dee221eldblaa5401ace49d4
tree ad74385fbb0ef9f8b8d5al25d4b6e7ddc87ab20b tre
parent 365b5a345b2680615527b23eebbefa®9a2f784f2 comm

®

.-.
23
=

Introduce pluggable APIs for Cumulative Statistics

This commit adds support in the backend for $subject, allowing
out-of-core extensions to plug their own custom kinds of cumulative
statistics. This feature has come up a few times into the lists, and
the first, original, suggestion came from Andres Freund, about
pg_stat_statements to use the cumulative statistics APIs in shared
memory rather than its own less efficient internals. The advantage of
this implementation is that this can be extended to any kind of
statistics.

The stats kinds are divided into two parts:

— The in-core "builtin" stats kinds, with designated initializers, able
to use IDs up to 128.

— The "custom" stats kinds, able to use a range of IDs from 128 to 256
(128 slots available as of this patch), with information saved in
TopMemoryContext. This can be made larger, if necessary.

There are two types of cumulative statistics in the backend:

- For fixed-numbered objects (like WAL, archiver, etc.). These are
attached to the snapshot and pgstats shmem control structures for
efficiency, and built-in stats kinds still do that to avoid any
redirection penalty. The data of custom kinds is stored in a first
array in snapshot structure and a second array in the shmem control
structure, both indexed by their ID, acting as an equivalent of the
builtin stats.

- For variable-numbered objects (like tables, functions, etc.). These
are stored in a dshash using the stats kind ID in the hash lookup key.

Internally, the handling of the builtin stats is unchanged, and both

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=7949d9594582ab49dee221e1db1aa5401ace49d4

4
pganalyze

A new pg_stat_plans

SELECT * FROM pg stat plans;

—[RECORD 1 J=——tmm e

userid

dbid

toplevel
queryid

planid

calls

total exec time
plan

10
16391
t
-2322344003805516737
-1865871893278385236
1
0.047708
Limit
-> Sort
Sort Key: database stats 35d.frozenxid age DESC
-> Bitmap Heap Scan on database stats 35d 20250514 dat:
Recheck Cond: (server id = '00000000-0000-0000-00

Cumulative statistics on which query ID used which plan,
how often (calls), and how long it took (total_exec_time).

A new pg_stat_plans

SELECT * FROM pg stat plans;

—[RECORD 1 J=——tmm e e
userid 10

dbid 16391

toplevel t

queryid -2322344003805516737

planid -1865871893278385236

Plan ID calculated with tree walk after planning
+ copying code from Postgres

$
pganalyze A new pg_stat_plans

SELECT * FROM pg stat plans;

Plan Text stored in Dynamic Shared Memory,
not a file on disk. Optionally compressed with zstd.

plan Limit
-> Sort
Sort Key: database stats 35d.frozenxid age DESC
-> Bitmap Heap Scan on database stats 35d 20250514 dat:
Recheck Cond: (server id = '00000000-0000-0000-00
Filter: ((frozenxid age IS NOT NULL) AND (collect
-> Bitmap Index Scan on database stats 35d 20250
Index Cond: (server id = '00000000-0000-000

A new pg_stat_plans

83994 -5449095327982245076 Merge Join
Merge Cond: ((a.datid = p.dbid) AND (a.usesysid = p.userid)
-> Sort
Sort Key: a.datid, a.usesysid, a.query id, a.plan id
-> Function Scan on pg stat plans get activity a
-> Sort
Sort Key: p.dbid, p.userid, p.queryid, p.planid
-> Function Scan on pg stat plans p
Filter: (toplevel IS TRUE)
87168 4721228144609632390 Sort
Sort Key: g.id
-> Nested Loop
-> Index Scan using index query runs on_server id or
Index Cond: (server id = '00000000-0000-0000-0C
Filter: ((started at IS NULL) AND (finished at

Get the plan for a currently running query
(no progress tracking, just the plan that's being used)

A new pg_stat_plans

Overhead is noticeably lower
than existing extensions (higher is better)

TPS, pgbench -T 60 -S, Best of 3, AWS c7i.4xlarge

17 default
17 pg_store_plans
18 default

18 pg_stat_statements

18 pg_stat_statements +
plans

18 pg_stat_plans w/o
compress

18 pg_stat_plans w/
compress

0 10000 20000 30000

4
FERITEL T A new pg_stat_plans

Next steps for pg_stat_plans 2.0

- Plan text compression improvements

- Stabilize extension (test/benchmark)

- Partial support for older releases

4
FERITEL T A new pg_stat_plans

Open questions

- How do we handle Append nodes in plan IDs?

- What metrics should we capture per-plan?

- Worth supporting other EXPLAIN formats?

- Should a future pg_stat_statements version handle

plans too, or should we keep it separate?

+
pganalyze

Thank you!

